Pipelt: A Pipeline Programming Framework for Embedded
Processor Array Systems-on-Chip

Dimitris Syrivelis, and Spyros Lalis
Computer and Communications Engineering Department, édsity of Thessaly, Volos, Greece

Abstract—This paper presents thPipelt framework for backend that is appropriately customized for and intedrate
developing pipelined applications targeted at tightlyapted with the target execution environment, and a corresponding
processor arrays on a chip. The framework includes aront-end compiler that generates the ultimate source code
component programming and wiring model, a runtime en-and builds scripts so that a regular toolchain can then ba use
vironment, and a corresponding toolchain. It enables theto produce proper executables. A custom loader is used to
programmer to develop applications in a high-level mannerdeploy Pipelt application stages at runtime, and the initial
structuring the code at the finest possible/meaningful leffe arrangement can be changed at any point in time if the
granularity, without caring about how this will be deployed system workload changes. This is achiewgtthoutrequiring
and executed. At runtime, the stages of the pipeline arPPA cores to feature heavyweight OS support.
distributed among the available processors. This arrange- The main contributions of this work are: i) the modular
ment can be changed dynamically when anotfépelt application design approach that enables the reuse offbasic
application needs to be executed concurrently. We discussmmon pipeline structures; ii) seamless pipeline exeauti
and demonstrate a complete embedded system prototype.with support for the efficient dynamic reassignment of sséage
to available cores; iii) the ability to invoke a pipelined
Keywords: embedded processor arrays, application-level pipelingomputation via a simple library call from within a conven-

ing, dynamic load balancing, reconfiguration tional application; iv) a prototype implementation of ikt
1] q . development tools along with with an emulation environment
. Introauction for debugging and accessing expected performance of the

The promising performance and better physical as well apipelined computation; and v) an implementation of a well-
financial scalability, have motivated researchers to im@ro known application on an FPGA-based PPA prototype.
all aspects of multicore computing both for high-end and
embedded systems. At the architecture_ level, approach_c?_ Pipelt Target Platform
range from loosely-coupled processors interconnected via
ethernet on different nodes, to tightly-coupled processor With Pipelt we wish to support the pipelining of typ-
a chip that are typically assigned with dedicated tasks angal CPU-intensive computations of embedded applica-
are connected together via high end dedicated links withodtons which operate on data block streams, e.g., cipher,
any arbitration [1]. Platform differences in conjunctioittv (de)compression or encoding/decoding algorithms.
the wide polymorphism in terms of applications also lead The target platform is tightly-coupled distributed memory
to a variety of partitioning and communication schemes. Irparallel processor arrays (PPAs) [1], aimed for general-
turn, these can be supported by different tools. Of counsge, t purpose embedded computing. PPAs typically feature re-
type of computation at hand may naturally favor a certairconfigurable, ultra fast and dedicated interconnectioa$ th
scheme. Another important aspect is whether a multicorintroduce a small overhead for data block transfer. The indi
system is used in a dedicated fashion, or in the context of avidual processing elements are rather resource congtraine
open computing environment. In the former case, the optimakith memories of a few Mbytes, and cannot host proper
partitioning of the computation that will lead to the bestOS support or heavyweight runtime environments. PPAs are
possible performance can be decided at the design phaswirrently used as dedicated coprocessors that may carry out
On the contrary, in the latter case, new tasks may appear ate large computation at a time which is divided in an a
any point in time and the available resources must be useetiori known number of statically assigned tasks.
opportunistically to boost performance. Our work assumes a special processor on the PPA (or
In this paper we present th&ipelt framework which pro- an external processor connected to the PPA) which plays
vides support for building and deploying application-spec the role of the platformmaster is interfaced to all platform
pipelines on tightly-coupled distributed memory parallelperipherals, runs a proper OS/runtime, and is responsible
processor arrays (PPAs) [1] for embedded systems in thier configuring the PPA to setup application pipelines as
context of an open, general-purpose computing environmerdesired. In the general case, several pipelined applitatio
Pipelt includes a component and wiring model, a runtimemay execute concurrently to each other but also other

rosi-ras contain the component’s data transfer and stage processing

Component

Class b 522 % ourpuc o code. It is invoked from within théipelt runtime, in an
) | _J L endless loop.

%‘ e Rl | Data transfer is performed using theput and output
s50 j‘ functions. These are inherited from the base runtime type
pipelt | pon class, and are mapped to the communication primitives
Classes of the respective runtime environment. Ports are addressed
. o o using a simple numbering scheme which is mapped by the
Figure 1: An indicativePipelt pipeline Pipelt framework to appropriate target-specific addresses.

conventional applications running on the master processoin a nutshell, components receive and send data using the
The system workload, in terms of both conventional andabstractPipelt primitives and port ids without caring about

pipelined applications, may change dynamically. the underlying platform details.
. Memory allocation of data buffers must be done using
3. ThePi peIt Framework the pipelt_mallocfunction provided by the runtime. This is

To enable structured development of pipelined applicanecessary becaugtipelt needs to control data access and
tions, Pipelt adopts a component model. Each componentransfers in order to perform component migration safely
represents a pipeline stage that ideally should be executédring pipeline restructuring. For the same reason, static
using a separate processor. Components have a fixed numi§€clarations of data transfer blocks are not allowed.
of input and output ports. They can be wired together, ligkin As an example, we give the code of a simféelt
together output ports with input ports in a point-to-pointcomponent that receives an integer from its input port,
fashion according to the desired data flow. The wiring ofincrements it, and forwards it to its output port:
components is practically orthogonal to their implementa- class Incint : public PipeltOs
tion, and it is specified in a separate so-called configunatio { public :
file. Basic checking is done so that interconnected ports Incint() {;}
handle data objects of the same size. During execution, each ;4 config(int argc, char =argv[]) {
component blocks until data is available, processes dath, a data = pipeit_mallocgizeof(int));
writes data to its output, in an endless loop. PP a e o Ge e,

The only component that has no input ports, i.e., does '}
not wait for data to arrive from another component, is void exec(void +d, int size) {
the pipeline entry point, calledot. The root component pipeit_input(0, &data, sizeof(int));
typically reads data from an external source, such a file, e oot (0. adata . sizeof(int)):
special memory location or a special device. Similarly, the }
only component that has no output ports, i.e., does not send’
data to another component, is the pipeline exit point, dalle Data is passed from one component to another by writing
sink which typically writes data to an external destination.and reading proper output and input ports. However, some
The root and sink both run on the master processor (usingariables may need to be accessetl between the root and
two different threads), enabling the seamless integratiosink components, hence need not travel through the entire
of the pipelined computation with the rest of the systempipeline. A separate mechanism, called tlemtext queue
Figure 1 shows an indicativ®ipelt pipeline. Note that is employed to keep track of these values in synch with the
it is possible to have branches in order to introduce datpipeline. Before writing data into its output, the root adds
parallelism inside the pipeline. a context entry with the proper values, and, conversely, the
. sink removes the next context entry before attempting td rea
3.1 Component and communication model data from its input. In our implementation, the root and sink

A Pipelt component is coded as a C++ object, in athreads use a shared memory FIFO queue.
separate file with the same name. Each component class)
must be defined as a subclass otiatime typeclass, which 3-2 Runtime classes
features two virtual functiongonfigandexe¢ that must be Pipeltintroduces runtime support mainly for two reasons:
overloaded. Theconfig function is called once, before the i) to confine the programmer during the development of
execution commences, and must be used to declare the postscomponent to the execution environment and available
of the component and initialize its internal state. Differe resources of the target processing element; and ii) to ke abl
configuration strings can be passed to each component, maio- dynamically reconfigure the component placement in a
ing it possible to implement flexible initialization schesne seamless fashion.
and allowing for component classes to be reused in the There are two radically different execution environments,
same or differenPipeltapplications. Thexecfunction must the master processor which runs a proper operating system,

and ordinary PPA processors running a small basic 1/0 To enhance the structure of complex computations, and to
system (BIOS) that is a custom implementation. In bothenable the reuse of common sub-structures, configurations
casePipeltadds a thin layer providing a set of generic datacan be grouped into so-called composites which export their
transfer primitives, optimized for the respective envirmnt. input and output ports. Composites have a so-called execu-
There are three differemuntime typeclasses,PipeltOS tion type, for which there are two options. TRgeltMaster
PipeltBIOSand PipeltOSLih which can be used to develop type is used for composites that will run on the master
components. Each reflects a different flavor of ®ipelt processor; their components must extend figeltOS or
runtime support, as follows. PipeltOSLibclass. ThePipeltArray type is used for com-
The PipeltOS class is used for components that will posites that should run on ordinary PPA cores, and all of
execute on the master processor, having access to the ftitieir components must extend tRgeltBIOSclass. APipelt
functionality of a proper OS. This runtime class is used forconfiguration file has exactly onBipeltMaster composite
the root and sink components, which may contain systerand an arbitrary number dfipeltArray composites.
calls and access peripherals. The generated code is anAs an example, the application shown below uses two
autonomous executable that runs on the master processmmposites to increment an integer value twice. Trient-
under the full-fledged OS and uses a sepaP&dSIXthread Twice composite of typePipeltArray uses two appropriately
for running each component. connected instances of tHacint class. One instance is
The PipeltBIOSclass is aimed at components that shoulddeclared explicitly while the other is declared implicjtiyia
run on ordinary PPA cores on top of thHeipelt BIOS. the class name. ThdyAppcomposite of typdipeltMaster
In this context the programmer may only perform CPUcontains aMyRootand aMySink component (the code of
intensive computations, read data from input ports andewritthose component is not shown here).
data to output ports. Attempts to use a non-existing runtimeppeitarray IncintTwice {
feature will cause the compilation of the component to fail. inc :: Incint();
. input [0] —> [O]inc;
The default for such components is for them to execute incjo] —> [0]incint()[0] —> output [0];
on a dedicated PPA core. However, as a result of pipeline}:
reconfiguration, several such components can be placed 0Bjpeitmaster Myapp {

the same PPA core or even on the master processor. roo '\’\/IAyFéqolz("{m"):
The PipeltOSLib class has a similar functionality to f[o']' e O'Etp(g{[o];

PipeltOS but it does not result in the generation of an _ input[0] —> [O]s;
autonomous executable. Instead, it produces code that e
ables the pipelined computation to be invoked from within MyApp[0] —> [O]IncIntTwice ;

. IncIntTwice [0] —> [0]MyApp;
an external application context, much like a library. Insthi
case, the root and sink components execute@SI|Xthreads Local (intra composite) connections are declared within
and must establish an appropriate communication channtie respective scope, while global (inter composite) conne
with the application, based on the arguments of ¢bafig tions are defined at the end of the configuration file. The
and/orexecfunctions. Any IPC mechanism can be used forkeywordsinputandoutputrefer to the input and output ports
this purpose. The corresponding initialization code i€@th of the composite. Also, in this example, the computation
in a routine named according to a certain convention, anthkes its input via the configuration string “42” passed to
this routine must be invoked from the application beforethe MyRootcomponent, hence thigdlySinkcomponent will
initiating communication with these components. receive the value4.

3.3 Configuration language 3.4 Dynamic load balancing support

The wiring of eachPipelt computation is specified in a The pipeline structure of Ripelt application is designed
separate configuration file. Configurations are expressed uassuming that all the components (stages) of the pipeline
ing three elements: component declarations, port cororecti will be executed on a dedicated PPA core. However, at
and composites. deployment time, there may not be as many processors

Components are declared using the class names of the @vailable, either because the system does not have them in
spective implementations, optionally giving a configurati the first place or because some processors are already being
string that can drive initialization. The configurationisty used for other applications. In addition, during the exiecut
is not interpreted by th@ipelt framework; it is passed “as of the application, new tasks may arrive and exiting tasks
is” to the component, via a call to itonfigfunction. Input may finish. Thus a dynamic restructuring of the application
and output ports are denoted in brackets placed at the lgfipeline is needed in order to release some processors, ofr,
and right hand side of a component name, respectively. Eaaonversely, to exploit some of the processors being retease
connection is denoted by a right arrow, starting from aninpu To enable the flexible and concurrent deployment and
port and pointing to an output port. execution of pipelined applicatio&ipelt comes with built-

(A) Transformed Sequential (B) Deploying Stage 1 (C) Deploying Stage 2

the master processor. During this initial execution phase,
e P - an appropriately instrumented version of theec call is
Gl | i/ e employed, through whiclPipelt collects information that

CPU
compl();
comp2();

compl();

sk e ; , g, LT can be used to estimate the processing overhead of each
(01 Deploging Stage 1.2 (€) Deploying Stage 1.2 component. Next, the component assignment scheme that
o o = will be used given the available number of processors is
o I s‘:o’"h;;;d};;rf comp1); decided. Finally, the required processors are allocated, a
B | i the application code (containing the code for all composjent
: i compa0 along with the correspondingomponentExecutionMamnd

IOMapsare loaded on each processor.

Figure 2: Configurations for a pipeline with 4 components The pipeline can be reconfigured at any point in time
during execution. This makes it possible to adapt to chang-
ing workload conditions, exploiting processors that beeom
available or releasing processors for the benefit of other

10Map (I0M)

c (cEM)
‘ EENE [Ro[s1] 52 s3[si] ‘D Virtual Transfer‘

A)

[[root | [comp1] [comp2] [comp3] | sink | applications. Load balancing is guided using a system ser-
T vice which must be inquired periodically to determine the
MEsiEr €AY most appropriate configuration. In our current implemen-
® “ tation, where frequent monitoring introduces considerabl
[root TTcomp1l %comrﬁl [sink] overhead, the rate at which this need to be done is specified
by the programmer during compilation. If a new processor
= and/or component assignment is determined to be more ben-
BTN g KT } eficial, thePipelt runtime performs the respective processor
5 allocation and loading, updates tlf@@omponentExecution-
EL LN

MapandlOMaps pushes this information down the pipeline,
and proceeds with the execution.

compl sink

|
l ‘E'i!' 'liE" CmED] Figure 3 shows three indicative configurations for an
A — — application with five components, together with the corre-
‘ Pipelt Runtime }—»‘ Pipelt Runtime ‘—»‘ Pipelt Runtime ‘ _ . R
[Masterceyl [cpu] [_cpu | sponding data transfer and execution mappings. In case (A)

all components execute sequentially on the master progesso
Figure 3: Structures for supporting pipeline restructiirin - and communication is done using shared buffers. In the
case (B) the third component is set for execution on a PPA
processor, and the output mapping of the second component
in support for dynamic load balancing. Specifically, theas well as the input mapping of the fourth component are
runtime can assign the component of a pipeline on the sanset to invoke the appropriate communication primitives to
or different processors in a transparent way. The assighmesend/receive data between the master processor and the PPA
obeys the following rule: if two components are assignedprocessor. Finally, case (C) depicts the deployment ofrekco
on the same processor, every component between theamd third component on distinct PPA processors.
must also be assigned on that processor. Figure 2 shows o
all such configurations for a pipeline with four components3-5 Application development and tools

including the root and sink. The developer must first provide at least the skeleton for
The components to be executed on each processor asach component, and then write the application configura-
specified using a so-calléfomponentExecutionMawhich tion file. The Pipelt compiler parses the file, creates the
is disseminated from the master to the PPA processors vigppropriate data structures used to configure all aspects of
a simple protocol. On each processBipelt uses a simple the pipeline structure, and generates corresponding fiavou
scheduler to execute all co-located components sequgntialof pipeit.h files, to be included by convention in each
No real data transfer is performed between co-located contomponent implementation. These header files contairec stati
ponents. Instead, both ends of each local link share a datieclarations of various required variables, including the
buffer which is accessed from within the respective I/Ozall transfer bitmaps and profiling structures, as well as suppor
The 1/O behavior of each component is controlled via a sostructures to map the port numbers onto the platform-specifi
calledlOMap, which indicates whether tHaputandoutput addressing primitives for each component. At this point,
calls should perform a remote or local/virtual data transfe regular development toolchains can be used to compile the
The initial configuration of the pipeline is established generated code for the target and the emulation platform.
as follows. When the computation is first deploy&ipelt The default mode is to produce code for all components
runs the pipeline for a number of iterations sequentially orto execute on the master processor environment, and for

all components except the root and sink to execute on an The SHA1l code employs 4 different functions which
ordinary PPA processor environment. The compiler alsgperform the same amount of computation on a data block,
accepts a hint in terms of preferred component co-locatiodoing 80 sequential invocations with varying parameters in
for the case where there are not enough PPA processaistal (the original code is highly optimized, using inline
or the local memory of a PPA processor cannot host alfunctions etc). Hence, thRipeltimplementation is based on
components; in the latter case, different executablesheill 6 component types (for the root, the sink, and each function)
generated for different sets of PPA processors. which are used to construct a pipeline of 80 components plus

The Pipelt toolchain can also be used to generate exethe root and sink. Below we list a simplified version of the
cutables for emulated execution on a Linux host. In essencepurce code of a typical component type, followed by an
the master and PPA processors are emulated using distiretcerpt of the configuration file:
processes and interconnections are emulated via unix nameghss ro: public PipeltBIOS
pipes. The number of available PPA processors is specified bublic :
by the user. Running an application in emulation mode " ro(){:} ~RO(){:}
simplifies debugging. Moreover it provides a computation struct Data «d;

. : . . int argl, arg2, arg3, arg4, argbh, offset;

to communication ratio estimate and enables the use of

sophisticated profiling tools likgprof to guide component void config(char « args) {
e d=pipeit_malloc(sizeof(struct Data));
partitioning and co-location preferences. Another maitra pipeit_add_input(0,sizeof(Data)):

for using the emulation mode is to assess the expected pipeit_add_output(0,sizeof(Data));
. . . parse_args (args);

performance on the target platform for various pipeline-con
figurations. Of course, if the emulation host has a radically void e{(fc.(voidt <*od' (\i/nt.dsiis) { {(Data))

. . . . ipel npu , ol * ,S1Zzeo ata)
different architecture from the target platform, it mighdtn Eo%a.c—(df’argl ,d+arg2 ,d+arg3 ,d+arg4 ,d+arg5 , offset);
be possible to make an accurate estimation.) pipeit_output(0, @oid »)d, sizeof(Data));

. . . void ROCalc(void *pl, void *p2, void *p3,

4. Pipelt Prototype and Applications void +p4, voids pS5, int offset) {

Our prototype is a custom PPA system implemented on }
a FPGA as a system-on-chip. The hardware platform is an
Atmark Techno S_uzaku [2_], Whi_ch features a Xilinx Spartan pjpeitarray sna1 {
3 FPGA along with off-chip peripherals. For the master and input [0] —> [0]RO("a b ¢ d e 0")[0]
ordinary PPA cores we use tb@inx Microbla_zesoft proces- Z3 [0JR4("b ¢ d e a 79")[0] —> output [0]
sor, a classic 32-bit RISC architecture. Microblaze fesdur 1}
a fas_t bus architecture _named Fast Simplex I_.inks_(FSL).Pipe,t,\,,é1ster SHA1APp {
This is a dedicated 32-bit wide unidirectional point-tafio SHALRoot () —> output [0];
communication channel, which does not need arbitration,};'”p”t[o] —> [0]SHALSInk()
provides hardware support to distinguish between data and _
control communication, and supports blocking/non-blagki 3;',’3{*5{’[81 ;g] éa],fm,;;
asynchronous access. o

The master processor is interfaced to all platform periph- 1heé HMAC computation is based on SHAL. Indeed, the
erals and is responsible for running a customized version d7iPeltversion of HMACreuseshe Pipeltversion of SHAL,
theuClinuxembedded operating system [3], achievisgeg @S it can be seen from the corresponding configuration file:
BogoMIPS The PPA processors have only local memories PipeltArran SHAL { o

. . . —>
and are connected to each other with FSL links. The entire,, ""P!* (01 - = output (o]
system can be dynamically reconfigured at runtime usingp, - VA
special support which we have developed in previous work” Bttt (). 2 ouput [01:
[4]. For the purpose of this work, we have also developed input[0] —> [0]HMACLibSink();
an OS service that exports information about the number’’
of available PPA cores and master cpu usage pfiac l;mf/*gp[ol —C>) F["(\>/I]ASCHA1_:
filesystem, used by thipelt runtime in order to determine o1 = 1ol AP
the component placement for application pipelines. .
4.2 Experimental results

4.1 Applications We tested théipelt version of SHA1 on our platform as

As a proof of concept application, we have implementedan autonomous application as well as as a part of an HMAC
a Pipelt versions of the Secure Hash Algorithm and HMAC application (the HMAC keys are set once, at the beginning
authentication code. We also integrated this implemenati of the program). Both applications feed the pipeline with
in the Crypto library, using thePipelt library mode. predefined data blocks in an endless loop, mimicking a

Computation original Pipelt seq 4 CPUs 5 CPUs

continuous stream. Taking advantage of the library-oeiént SHAL 552Kb/s | A3.1Kb/s | 156Kb/s | 193Kb/s
execution mode oPipelt, we also integrated the pipelined HMAC 54.1Kb/s | 42.8Kb/s [1564.9Kb/s | 191Kb/s
version of HMAC (and SHAZ1) in th€rypto library. Table 1: Performance of SHA1 and HMAC

In a first series of experiments, we performed measure-
ments for the case where the pipelined computation runs: (i

only on the master processor; (ii) on 4 processors includin ; . ;
n an idle system, exploiting all 5 processors as discussed

the master; and (iii) on 5 processors including the master. . . .
' (i) P 9 above. The second instance is started at a later point, when

In all cases, the system was unloaded, i.e., there were %) o o . X
- . : e pipeline of the first instance is already running. As a
other applications running at the same time. The results are

shown in Table 1, including the performance of the originalrizzggocgnﬁrzg dp?é?]ntcc')n?h’eeamC:Sf:rmgrL:;aEfg tls gss-lggﬁﬁei
(highly optimized) sequential programs as a reference. The ! i ' WO pIPEl

performance of th€ipelt HMAC is naturally dominated by are configured appropriately, having just the root and sink
the performance of SHA1 on the master and 40 components on each other processor.

The first observation is that the sequential execution of thghe throughput achieved by each computatiodss/s,

pipelined versions introduces a notable overhead, peifgym giving a total of152Kb/s. For comparison, the performance

at about).8x compared to the original code. This is because"JIChIeved for a single computation with the same pipeline/-

) L) .~._component configuration on an idle systenT&b/s. This
Pipelt explicitly invokes each component in a loop, thus it is . .
; - S .~ overhead is due to the fact that the master processor issshare
not possible to optimize code, e.g., by using inline funtdio

The second observation is that the speedup achieved Whleare].\tween the (root and sink of) the two computations, and this

using 5 processors is45x compared to the sequentRipelt contention leads to occasional pipeline stalls.
gop P € 5€q : Having the pipelined version of HMAC (and SHA1)
execution, and.5z compared to the original version. The .

latter is far away from what is theoretically possibler), integrated in theCrypto library, makes it trivial to exploit

. . . it from within existing and conventionalapplications in a
mainly due to the execution and communication overhea

imposed by thePipelt runtime for co-located components. ransparent fashion. As a proof of concept, we used

e version 2 of the SCP protocol) to copy @M Byte file
Specifically, for SHAL, 12 components plus the root andE)ver Ethernet from a PC connected on the same switch

sink are assigned to the master, while other PrOCeSSORY the Suzaku board. Using the original HMAC/SHAL, the
are assigned 17 components each. The overhead increases

ansfer was performed &8.1Kb/s vs22.4kb/s when using
as less processors are used and the number of co-Iocatt%e Pipelt versions, giving an improvement df23z. The
components increases, as demonstrated for the case of usmp?eedu i relativél small because HMAC accounts for a
just 4 processors, each having 20 assigned components ({ P y

: tather small part of the processing donedop (which was
master also runs the root and sink). left untouched). It is also important to note that since the

S o7 %onventional part obcpruns on the master processor, the
the number of application-level components (pipelineetg Pipelt runtime deploys the HMAC/SHAL pipeline on just 4

to better fit the actual platform capabilities; in this Case’processors, using the master only for the root and sink.

by introducing fewer and more heavywe|gh_t C(_)mponent_s. To confirm that load balancing works better when the
To demonstrate this we created a second pipelined version .) .)
o ; " pipeline has a finer granularity, we repeated the same file
of SHA1 with just 5 components in addition to the root . . L .
: ; . . transfer experiment using the 5-component pipeline varsio
and sink. Each component contains an optimized integrate

version of the code of the components that were co—Iocate0 HMAC/SHAL discussed previously. In this case, the

in the 5-processor execution scenario. This program aedievt roughputwas onig0.4kb/s. Given that thePipeltruntime

a throughput of253.9%b/s which roughly equals to &.6x decides avoid using the master (except for the root and,sink)

performance improvement over the original sequential code2 out of the 5 (coarse-grained) components end up being

! , executed on the same processor, resulting in an unbalanced
and4.76x compared to the corresponding sequerfiglelt P g

execution. The downside is that the 5-component pipe"m(?j|str|but|on of the pipelined computation which in turndisa

. ; . . 0 a deteriorated performance.

is very coarse-grained and cannot possibly give a speedup

greater thanbx, even if the underlying platform features

more cores. On the contrary, the 80-component pipelin?' Related Work

version may theoretically reach &x speedup if run on The Ambric PPA architecture [1] integrated with a master

a PPA with 80 (idle) cores. Another issue is that havingCPU that can run a full-fledged OS would be an ideal high-

fewer pipeline components/stages also limits the optidns qerformance target for our framework. Currently Ambric

the runtime in terms of evenly distributing the amount ofuses a structured object programming model. The program-

processing on top of fewer processors. mer separates the application into high-level processing
To verify the ability of our system to perform dynamic objects which can be developed independently and can

load balancing, we run two instances of tRgelt SHA1 execute asynchronously with each other, at their own clock

omputation concurrently to each other, using a total of 5
rocessors including the master. The first instance isestart

speed, on their own dedicated processor core. We beliexgrammer has to write code explicitly for this purpose.

that the integration of PPA functionality in an OS context]

with dynamic load balancing is also important. To that6. Conclusion

end, our approach could be used to efficiently accommodate \ne have presenteBipelt, a framework that supports the

concurrently running applications on such platforms. development of pipelined applications for embedded PPA
The component-based design Ripelt has been heavily targets in the context of an open, general-purpose runtime

influenced by the Click framework [5], although this targets environment. Our vision is to have a system where cpu-

different application domain, namely the modular implemenintensive tasks of various applications are implemented as

tation of router fUnCtiona"ty. Click features++ ObjeCtS and fine_grained pipe”nes (|f appropriate) which are dep|ogad

employs a configuration language for specifying a networkhe available PPA processors in a flexible way, as a function

of objects. ThenesClanguage [6], introduced to support of the current system workload. To that end, providing

application development for resource constrained wiselessypport for dynamic load balancing, without forcing the

nodes (motes), also relies on the notion of components angtogrammer to think about the platform constraints and

wiring configurations.

without requiring full-fledged OS support on each PPA

Streamlt [7] also introduces a high-level programmingprocessor, is of major importance.

model, but for a broader application domain th@ipelt,
including all types of applications that use a stream as aif,

Acknowledgments

abstraction. In this case, there is no notion of a component 1. paper is part of the 03ED918 research project,

configuration, instead components are explicitly intezthto

implemented within the framework of the “Reinforcement

each other as a part of their implementation. The StreamE’rogramme of Human Research Manpower” (PENED) and
compiler can automate tasks such as partitioning, Stati(‘fo-financed by National and Community Funds (75% from

load balancing, layout, and memory management. Howeveé U.-European Social Fund and 25%

to our knowledge, there is no support for balancing
computation at runtime.
Coarse-grained pipelining is addressed in [8], where an-

from the Greek Min-

aistry of Development-General Secretariat of Research and
Technology).

notations are proposed in order to perform the required codR eferences

restructuring at the source level. Pipeline parallelisral$®
exploited in [9] using the techniques of Decoupled Software
Pipelining [10], also employing thread-level speculation
opportunistically execute multiple loop iterations in gisel.
While these approaches could be used for a PPA target, the?]
both assume a homogeneous shared memory system whefg
processors are a priori assigned to applications.

In the spirit of Pipelt, work in [11] also targets a dynamic 5]
computing environment where platform resources are not
statically dedicated to computations. To achieve balanced®]
execution of parallel applications, a user-level schedise |,
proposed, which dynamically distributes tasks over a fixed
collection of processes, which in turn are scheduled on alél
fixed collection of processors by the operating system kerne 9]
Contrary toPipelt, this approach requires a full-fledged OS
on each processor in order to run OS-level processes amf]
IPC mechanisms. [11]

Finally, dynamic task partitioning methods have been
proposed to deal with unstructured mesh problems [12]
[13]. In [12] the tasks of a computation are developed usin
an appropriate programming model and a software frame-
work, which features an extension called Mobile Object(!3]
Layer(MOL) [14] that enables transparent task migration
between processors at runtime. The authors have extendgd]
the MOL concept by adding load balancing routines that
communicate with respective runtime support. In this case,
the target platform is not a tightly coupled SoC and load
balancing remains an application-level task, i.e., the- pro

(1]

[2]

12]

M. B. et al., “A structural object programming model, hitecture,
chip and tools for reconfigurable computing,” RCCM, 2007.
Suzaku Serigs Atmark Techno Inc, http://www.atmark-
techno.com/en/products/suzaku.

J. Williams, The Microblaze-uClinux kernel
http://www.itee.ug.edu.au/ jwilliams/mblaze-uclinux/
D. Syrivelis and S. Lalis, “System- and applicationdéwsupport for
runtime hardware reconfiguration on soc platforms.UBENIX ATC
2006.

E. K. et al,, “The click modular router,ACM Trans. Comput. Syst.
vol. 18, no. 3, 2000.

D. G. et al., “The nesc language: A holistic approach tomoeked
embedded systems,” iALDI, 2003.

port Project

] W. T. et al., “Streamit: A language for streaming appiicas,” in

Computational Complexity2002.

W. Thies, “A practical approach to exploiting coarseiged pipeline
parallelism in ¢ programsMICRO, 2007.

M. J. B. et al., “Revisiting the sequential programmingahel for

multi-core,” in MICRO, 2007.

N. V. et al., “Speculative decoupled software pipelml' in PACT,

2007.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread edhiling

for multiprogrammed multiprocessors,” BPAA '98 ACM, 1998,

pp. 119-129.

K. B. et al., “A load balancing framework for adaptive caasyn-
chronous applications,JEEE Trans. Parallel Distrib. Systvol. 15,

no. 2, 2004.

C. W. et al., “Parallel dynamic graph partitioning fodaptive un-
structured meshes,Journal of Parallel and Distributed Computing
vol. 47, no. 2, 1997.

N. C. et al., “Mobile object layer: a runtime substratr fparallel

adaptive and irregular computationgitv. Eng. Softw.vol. 31, no.

8-9, 2000.

