
PipeIt: A Pipeline Programming Framework for Embedded
Processor Array Systems-on-Chip

Dimitris Syrivelis, and Spyros Lalis
Computer and Communications Engineering Department, University of Thessaly, Volos, Greece

Abstract— This paper presents thePipeIt framework for
developing pipelined applications targeted at tightly-coupled
processor arrays on a chip. The framework includes a
component programming and wiring model, a runtime en-
vironment, and a corresponding toolchain. It enables the
programmer to develop applications in a high-level manner,
structuring the code at the finest possible/meaningful level of
granularity, without caring about how this will be deployed
and executed. At runtime, the stages of the pipeline are
distributed among the available processors. This arrange-
ment can be changed dynamically when anotherPipeIt
application needs to be executed concurrently. We discuss
and demonstrate a complete embedded system prototype.

Keywords: embedded processor arrays, application-level pipelin-
ing, dynamic load balancing, reconfiguration

1. Introduction
The promising performance and better physical as well as

financial scalability, have motivated researchers to improve
all aspects of multicore computing both for high-end and
embedded systems. At the architecture level, approaches
range from loosely-coupled processors interconnected via
ethernet on different nodes, to tightly-coupled processors on
a chip that are typically assigned with dedicated tasks and
are connected together via high end dedicated links without
any arbitration [1]. Platform differences in conjunction with
the wide polymorphism in terms of applications also lead
to a variety of partitioning and communication schemes. In
turn, these can be supported by different tools. Of course, the
type of computation at hand may naturally favor a certain
scheme. Another important aspect is whether a multicore
system is used in a dedicated fashion, or in the context of an
open computing environment. In the former case, the optimal
partitioning of the computation that will lead to the best
possible performance can be decided at the design phase.
On the contrary, in the latter case, new tasks may appear at
any point in time and the available resources must be used
opportunistically to boost performance.

In this paper we present thePipeIt framework which pro-
vides support for building and deploying application-specific
pipelines on tightly-coupled distributed memory parallel
processor arrays (PPAs) [1] for embedded systems in the
context of an open, general-purpose computing environment.
PipeIt includes a component and wiring model, a runtime

backend that is appropriately customized for and integrated
with the target execution environment, and a corresponding
front-end compiler that generates the ultimate source code
and builds scripts so that a regular toolchain can then be used
to produce proper executables. A custom loader is used to
deploy PipeIt application stages at runtime, and the initial
arrangement can be changed at any point in time if the
system workload changes. This is achievedwithoutrequiring
PPA cores to feature heavyweight OS support.

The main contributions of this work are: i) the modular
application design approach that enables the reuse of basic/-
common pipeline structures; ii) seamless pipeline execution
with support for the efficient dynamic reassignment of stages
to available cores; iii) the ability to invoke a pipelined
computation via a simple library call from within a conven-
tional application; iv) a prototype implementation of all the
development tools along with with an emulation environment
for debugging and accessing expected performance of the
pipelined computation; and v) an implementation of a well-
known application on an FPGA-based PPA prototype.

2. PipeIt Target Platform
With PipeIt we wish to support the pipelining of typ-

ical CPU-intensive computations of embedded applica-
tions which operate on data block streams, e.g., cipher,
(de)compression or encoding/decoding algorithms.

The target platform is tightly-coupled distributed memory
parallel processor arrays (PPAs) [1], aimed for general-
purpose embedded computing. PPAs typically feature re-
configurable, ultra fast and dedicated interconnections that
introduce a small overhead for data block transfer. The indi-
vidual processing elements are rather resource constrained,
with memories of a few Mbytes, and cannot host proper
OS support or heavyweight runtime environments. PPAs are
currently used as dedicated coprocessors that may carry out
one large computation at a time which is divided in an a
priori known number of statically assigned tasks.

Our work assumes a special processor on the PPA (or
an external processor connected to the PPA) which plays
the role of the platformmaster, is interfaced to all platform
peripherals, runs a proper OS/runtime, and is responsible
for configuring the PPA to setup application pipelines as
desired. In the general case, several pipelined applications
may execute concurrently to each other but also other

Figure 1: An indicativePipeIt pipeline

conventional applications running on the master processor.
The system workload, in terms of both conventional and
pipelined applications, may change dynamically.

3. ThePipeIt Framework
To enable structured development of pipelined applica-

tions, PipeIt adopts a component model. Each component
represents a pipeline stage that ideally should be executed
using a separate processor. Components have a fixed number
of input and output ports. They can be wired together, linking
together output ports with input ports in a point-to-point
fashion according to the desired data flow. The wiring of
components is practically orthogonal to their implementa-
tion, and it is specified in a separate so-called configuration
file. Basic checking is done so that interconnected ports
handle data objects of the same size. During execution, each
component blocks until data is available, processes data, and
writes data to its output, in an endless loop.

The only component that has no input ports, i.e., does
not wait for data to arrive from another component, is
the pipeline entry point, calledroot. The root component
typically reads data from an external source, such a file,
special memory location or a special device. Similarly, the
only component that has no output ports, i.e., does not send
data to another component, is the pipeline exit point, called
sink, which typically writes data to an external destination.
The root and sink both run on the master processor (using
two different threads), enabling the seamless integration
of the pipelined computation with the rest of the system.
Figure 1 shows an indicativePipeIt pipeline. Note that
it is possible to have branches in order to introduce data
parallelism inside the pipeline.

3.1 Component and communication model
A PipeIt component is coded as a C++ object, in a

separate file with the same name. Each component class
must be defined as a subclass of aruntime typeclass, which
features two virtual functions,configandexec, that must be
overloaded. Theconfig function is called once, before the
execution commences, and must be used to declare the ports
of the component and initialize its internal state. Different
configuration strings can be passed to each component, mak-
ing it possible to implement flexible initialization schemes,
and allowing for component classes to be reused in the
same or differentPipeItapplications. Theexecfunction must

contain the component’s data transfer and stage processing
code. It is invoked from within thePipeIt runtime, in an
endless loop.

Data transfer is performed using theinput and output
functions. These are inherited from the base runtime type
class, and are mapped to the communication primitives
of the respective runtime environment. Ports are addressed
using a simple numbering scheme which is mapped by the
PipeIt framework to appropriate target-specific addresses.
In a nutshell, components receive and send data using the
abstractPipeIt primitives and port ids without caring about
the underlying platform details.

Memory allocation of data buffers must be done using
the pipeIt_mallocfunction provided by the runtime. This is
necessary becausePipeIt needs to control data access and
transfers in order to perform component migration safely
during pipeline restructuring. For the same reason, static
declarations of data transfer blocks are not allowed.

As an example, we give the code of a simplePipeIt
component that receives an integer from its input port,
increments it, and forwards it to its output port:

c l a s s I n c I n t : pub l i c Pipe I tOs
{

pub l i c :
I n c I n t () { ; }

vo id c o n f i g (i n t argc , char * a rgv []) {
d a t a = p i p e i t _ m a l l o c (s i z e o f(i n t)) ;
p i p e i t _ a d d _ i n p u t (0 , s i z e o f(i n t)) ;
p i p e i t _ a d d _ o u t p u t (0 , s i z e o f(i n t)) ;

}

vo id exec (vo id * d , i n t s i z e) {
p i p e i t _ i n p u t (0 , &da ta , s i z e o f(i n t)) ;
* d a t a = * d a t a + 1 ;
p i p e i t _ o u t p u t (0 , &da ta , s i z e o f(i n t)) ;

}
} ;

Data is passed from one component to another by writing
and reading proper output and input ports. However, some
variables may need to be accessedonly between the root and
sink components, hence need not travel through the entire
pipeline. A separate mechanism, called thecontext queue,
is employed to keep track of these values in synch with the
pipeline. Before writing data into its output, the root adds
a context entry with the proper values, and, conversely, the
sink removes the next context entry before attempting to read
data from its input. In our implementation, the root and sink
threads use a shared memory FIFO queue.

3.2 Runtime classes
PipeIt introduces runtime support mainly for two reasons:

i) to confine the programmer during the development of
a component to the execution environment and available
resources of the target processing element; and ii) to be able
to dynamically reconfigure the component placement in a
seamless fashion.

There are two radically different execution environments,
the master processor which runs a proper operating system,

and ordinary PPA processors running a small basic I/O
system (BIOS) that is a custom implementation. In both
casesPipeIt adds a thin layer providing a set of generic data
transfer primitives, optimized for the respective environment.
There are three differentruntime typeclasses,PipeItOS,
PipeItBIOSandPipeItOSLib, which can be used to develop
components. Each reflects a different flavor of thePipeIt
runtime support, as follows.

The PipeItOS class is used for components that will
execute on the master processor, having access to the full
functionality of a proper OS. This runtime class is used for
the root and sink components, which may contain system
calls and access peripherals. The generated code is an
autonomous executable that runs on the master processor
under the full-fledged OS and uses a separatePOSIXthread
for running each component.

ThePipeItBIOSclass is aimed at components that should
run on ordinary PPA cores on top of thePipeIt BIOS.
In this context the programmer may only perform CPU
intensive computations, read data from input ports and write
data to output ports. Attempts to use a non-existing runtime
feature will cause the compilation of the component to fail.
The default for such components is for them to execute
on a dedicated PPA core. However, as a result of pipeline
reconfiguration, several such components can be placed on
the same PPA core or even on the master processor.

The PipeItOSLib class has a similar functionality to
PipeItOS, but it does not result in the generation of an
autonomous executable. Instead, it produces code that en-
ables the pipelined computation to be invoked from within
an external application context, much like a library. In this
case, the root and sink components execute asPOSIXthreads
and must establish an appropriate communication channel
with the application, based on the arguments of theconfig
and/orexecfunctions. Any IPC mechanism can be used for
this purpose. The corresponding initialization code is placed
in a routine named according to a certain convention, and
this routine must be invoked from the application before
initiating communication with these components.

3.3 Configuration language
The wiring of eachPipeIt computation is specified in a

separate configuration file. Configurations are expressed us-
ing three elements: component declarations, port connections
and composites.

Components are declared using the class names of the re-
spective implementations, optionally giving a configuration
string that can drive initialization. The configuration string
is not interpreted by thePipeIt framework; it is passed “as
is” to the component, via a call to itsconfig function. Input
and output ports are denoted in brackets placed at the left
and right hand side of a component name, respectively. Each
connection is denoted by a right arrow, starting from an input
port and pointing to an output port.

To enhance the structure of complex computations, and to
enable the reuse of common sub-structures, configurations
can be grouped into so-called composites which export their
input and output ports. Composites have a so-called execu-
tion type, for which there are two options. ThePipeItMaster
type is used for composites that will run on the master
processor; their components must extend thePipeItOS or
PipeItOSLibclass. ThePipeItArray type is used for com-
posites that should run on ordinary PPA cores, and all of
their components must extend thePipeItBIOSclass. APipeIt
configuration file has exactly onePipeItMaster composite
and an arbitrary number ofPipeItArray composites.

As an example, the application shown below uses two
composites to increment an integer value twice. TheIncInt-
Twicecomposite of typePipeItArrayuses two appropriately
connected instances of theIncInt class. One instance is
declared explicitly while the other is declared implicitly, via
the class name. TheMyAppcomposite of typePipeItMaster
contains aMyRoot and aMySink component (the code of
those component is not shown here).

Pipe I tAr ray I nc In tT w ic e {
i nc : : I n c I n t () ;
i nput [0] −> [0] i nc ;
i nc [0] −> [0] I n c I n t () [0] −> output [0] ;

} ;

Pipe I tMas te r MyApp {
r : : MyRoot (" 42 ") ;
s : : MySink () ;
r [0] −> output [0] ;
i nput [0] −> [0] s ;

} ;

MyApp[0] −> [0] Inc In tT w ic e ;
Inc In tT w ic e [0] −> [0] MyApp ;

Local (intra composite) connections are declared within
the respective scope, while global (inter composite) connec-
tions are defined at the end of the configuration file. The
keywordsinput andoutputrefer to the input and output ports
of the composite. Also, in this example, the computation
takes its input via the configuration string “42” passed to
the MyRootcomponent, hence theMySinkcomponent will
receive the value44.

3.4 Dynamic load balancing support
The pipeline structure of aPipeIt application is designed

assuming that all the components (stages) of the pipeline
will be executed on a dedicated PPA core. However, at
deployment time, there may not be as many processors
available, either because the system does not have them in
the first place or because some processors are already being
used for other applications. In addition, during the execution
of the application, new tasks may arrive and exiting tasks
may finish. Thus a dynamic restructuring of the application
pipeline is needed in order to release some processors, or,
conversely, to exploit some of the processors being released.

To enable the flexible and concurrent deployment and
execution of pipelined applicationsPipeIt comes with built-

Figure 2: Configurations for a pipeline with 4 components

Figure 3: Structures for supporting pipeline restructuring

in support for dynamic load balancing. Specifically, the
runtime can assign the component of a pipeline on the same
or different processors in a transparent way. The assignment
obeys the following rule: if two components are assigned
on the same processor, every component between them
must also be assigned on that processor. Figure 2 shows
all such configurations for a pipeline with four components,
including the root and sink.

The components to be executed on each processor are
specified using a so-calledComponentExecutionMap, which
is disseminated from the master to the PPA processors via
a simple protocol. On each processor,PipeIt uses a simple
scheduler to execute all co-located components sequentially.
No real data transfer is performed between co-located com-
ponents. Instead, both ends of each local link share a data
buffer which is accessed from within the respective I/O calls.
The I/O behavior of each component is controlled via a so-
calledIOMap, which indicates whether theinput andoutput
calls should perform a remote or local/virtual data transfer.

The initial configuration of the pipeline is established
as follows. When the computation is first deployed,PipeIt
runs the pipeline for a number of iterations sequentially on

the master processor. During this initial execution phase,
an appropriately instrumented version of theexec call is
employed, through whichPipeIt collects information that
can be used to estimate the processing overhead of each
component. Next, the component assignment scheme that
will be used given the available number of processors is
decided. Finally, the required processors are allocated, and
the application code (containing the code for all components)
along with the correspondingComponentExecutionMapand
IOMapsare loaded on each processor.

The pipeline can be reconfigured at any point in time
during execution. This makes it possible to adapt to chang-
ing workload conditions, exploiting processors that become
available or releasing processors for the benefit of other
applications. Load balancing is guided using a system ser-
vice which must be inquired periodically to determine the
most appropriate configuration. In our current implemen-
tation, where frequent monitoring introduces considerable
overhead, the rate at which this need to be done is specified
by the programmer during compilation. If a new processor
and/or component assignment is determined to be more ben-
eficial, thePipeIt runtime performs the respective processor
allocation and loading, updates theComponentExecution-
MapandIOMaps, pushes this information down the pipeline,
and proceeds with the execution.

Figure 3 shows three indicative configurations for an
application with five components, together with the corre-
sponding data transfer and execution mappings. In case (A)
all components execute sequentially on the master processor,
and communication is done using shared buffers. In the
case (B) the third component is set for execution on a PPA
processor, and the output mapping of the second component
as well as the input mapping of the fourth component are
set to invoke the appropriate communication primitives to
send/receive data between the master processor and the PPA
processor. Finally, case (C) depicts the deployment of second
and third component on distinct PPA processors.

3.5 Application development and tools
The developer must first provide at least the skeleton for

each component, and then write the application configura-
tion file. The PipeIt compiler parses the file, creates the
appropriate data structures used to configure all aspects of
the pipeline structure, and generates corresponding flavours
of pipeit.h files, to be included by convention in each
component implementation. These header files contain static
declarations of various required variables, including the
transfer bitmaps and profiling structures, as well as support
structures to map the port numbers onto the platform-specific
addressing primitives for each component. At this point,
regular development toolchains can be used to compile the
generated code for the target and the emulation platform.

The default mode is to produce code for all components
to execute on the master processor environment, and for

all components except the root and sink to execute on an
ordinary PPA processor environment. The compiler also
accepts a hint in terms of preferred component co-location
for the case where there are not enough PPA processors
or the local memory of a PPA processor cannot host all
components; in the latter case, different executables willbe
generated for different sets of PPA processors.

The PipeIt toolchain can also be used to generate exe-
cutables for emulated execution on a Linux host. In essence,
the master and PPA processors are emulated using distinct
processes and interconnections are emulated via unix named
pipes. The number of available PPA processors is specified
by the user. Running an application in emulation mode
simplifies debugging. Moreover it provides a computation
to communication ratio estimate and enables the use of
sophisticated profiling tools likegprof to guide component
partitioning and co-location preferences. Another motivation
for using the emulation mode is to assess the expected
performance on the target platform for various pipeline con-
figurations. Of course, if the emulation host has a radically
different architecture from the target platform, it might not
be possible to make an accurate estimation.

4. PipeIt Prototype and Applications
Our prototype is a custom PPA system implemented on

a FPGA as a system-on-chip. The hardware platform is an
Atmark Techno Suzaku [2], which features a Xilinx Spartan
3 FPGA along with off-chip peripherals. For the master and
ordinary PPA cores we use theXilinx Microblazesoft proces-
sor, a classic 32-bit RISC architecture. Microblaze features
a fast bus architecture named Fast Simplex Links (FSL).
This is a dedicated 32-bit wide unidirectional point-to-point
communication channel, which does not need arbitration,
provides hardware support to distinguish between data and
control communication, and supports blocking/non-blocking
asynchronous access.

The master processor is interfaced to all platform periph-
erals and is responsible for running a customized version of
theuClinuxembedded operating system [3], achieving25.29

BogoMIPS. The PPA processors have only local memories
and are connected to each other with FSL links. The entire
system can be dynamically reconfigured at runtime using
special support which we have developed in previous work
[4]. For the purpose of this work, we have also developed
an OS service that exports information about the number
of available PPA cores and master cpu usage viaproc
filesystem, used by thePipeIt runtime in order to determine
the component placement for application pipelines.

4.1 Applications
As a proof of concept application, we have implemented

a PipeIt versions of the Secure Hash Algorithm and HMAC
authentication code. We also integrated this implementation
in the Crypto library, using thePipeIt library mode.

The SHA1 code employs 4 different functions which
perform the same amount of computation on a data block,
doing 80 sequential invocations with varying parameters in
total (the original code is highly optimized, using inline
functions etc). Hence, thePipeIt implementation is based on
6 component types (for the root, the sink, and each function)
which are used to construct a pipeline of 80 components plus
the root and sink. Below we list a simplified version of the
source code of a typical component type, followed by an
excerpt of the configuration file:
c l a s s R0 : pub l i c Pipe I tB IOS
{

pub l i c :
R0 () { ; } ~R0 () { ; }

s t r u c t Data * d ;
i n t arg1 , arg2 , arg3 , arg4 , arg5 , o f f s e t ;

vo id c o n f i g (char * a r g s) {
d= p i p e i t _ m a l l o c (s i z e o f(s t r u c t Data)) ;
p i p e i t _ a d d _ i n p u t (0 , s i z e o f(Data)) ;
p i p e i t _ a d d _ o u t p u t (0 , s i z e o f(Data)) ;
p a r s e _ a r g s (a r g s) ;

}
vo id exec (vo id * d , i n t s i z e) {

p i p e i t _ i n p u t (0 , (vo id *) d , s i z e o f(Data)) ;
R0Calc (d+arg1 , d+arg2 , d+arg3 , d+arg4 , d+arg5 , o f f s e t) ;
p i p e i t _ o u t p u t (0 , (vo id *) d , s i z e o f(Data)) ;

}
vo id R0Calc (vo id * p1 , vo id * p2 , vo id * p3 ,

vo id * p4 , vo id * p5 , i n t o f f s e t) {
. . .

}
} ;

Pipe I tAr ray SHA1 {
i nput [0] −> [0] R0 (" a b c d e 0 ") [0]
. . .
−> [0] R4 (" b c d e a 79 ") [0] −> output [0]

} ;

Pipe I tMas te r SHA1App {
SHA1Root () −> output [0] ;
i nput [0] −> [0] SHA1Sink ()

} ;

SHA1App [0] −> [0] SHA1 ;
SHA1[0] −> [0] SHA1App ;

The HMAC computation is based on SHA1. Indeed, the
PipeIt version of HMACreusesthePipeIt version of SHA1,
as it can be seen from the corresponding configuration file:

Pipe I tAr ray SHA1 {
i nput [0] . . −> output [0]

} ;

Pipe I tMas te r HMACApp {
HMACLibRoot () −> output [0] ;
i nput [0] −> [0] HMACLibSink () ;

} ;

HMACApp[0] −> [0] SHA1 ;
SHA1[0] −> [0]HMACApp;

4.2 Experimental results
We tested thePipeIt version of SHA1 on our platform as

an autonomous application as well as as a part of an HMAC
application (the HMAC keys are set once, at the beginning
of the program). Both applications feed the pipeline with
predefined data blocks in an endless loop, mimicking a

continuous stream. Taking advantage of the library-oriented
execution mode ofPipeIt, we also integrated the pipelined
version of HMAC (and SHA1) in theCrypto library.

In a first series of experiments, we performed measure-
ments for the case where the pipelined computation runs: (i)
only on the master processor; (ii) on 4 processors including
the master; and (iii) on 5 processors including the master.
In all cases, the system was unloaded, i.e., there were no
other applications running at the same time. The results are
shown in Table 1, including the performance of the original
(highly optimized) sequential programs as a reference. The
performance of thePipeIt HMAC is naturally dominated by
the performance of SHA1.

The first observation is that the sequential execution of the
pipelined versions introduces a notable overhead, performing
at about0.8x compared to the original code. This is because
PipeIt explicitly invokes each component in a loop, thus it is
not possible to optimize code, e.g., by using inline functions.
The second observation is that the speedup achieved when
using 5 processors is4.45x compared to the sequentialPipeIt
execution, and3.5x compared to the original version. The
latter is far away from what is theoretically possible (5x),
mainly due to the execution and communication overhead
imposed by thePipeIt runtime for co-located components.
Specifically, for SHA1, 12 components plus the root and
sink are assigned to the master, while other processors
are assigned 17 components each. The overhead increases
as less processors are used and the number of co-located
components increases, as demonstrated for the case of using
just 4 processors, each having 20 assigned components (the
master also runs the root and sink).

It is of course possible to boost performance by adjusting
the number of application-level components (pipeline stages)
to better fit the actual platform capabilities; in this case,
by introducing fewer and more heavyweight components.
To demonstrate this we created a second pipelined version
of SHA1 with just 5 components in addition to the root
and sink. Each component contains an optimized integrated
version of the code of the components that were co-located
in the 5-processor execution scenario. This program achieved
a throughput of253.9kb/s which roughly equals to a4.6x
performance improvement over the original sequential code,
and4.76x compared to the corresponding sequentialPipeIt
execution. The downside is that the 5-component pipeline
is very coarse-grained and cannot possibly give a speedup
greater than5x, even if the underlying platform features
more cores. On the contrary, the 80-component pipeline
version may theoretically reach a80x speedup if run on
a PPA with 80 (idle) cores. Another issue is that having
fewer pipeline components/stages also limits the options of
the runtime in terms of evenly distributing the amount of
processing on top of fewer processors.

To verify the ability of our system to perform dynamic
load balancing, we run two instances of thePipeIt SHA1

Computation original PipeIt seq 4 CPUs 5 CPUs
SHA1 55.2Kb/s 43.1Kb/s 156Kb/s 193Kb/s
HMAC 54.1Kb/s 42.8Kb/s 154.9Kb/s 191Kb/s

Table 1: Performance of SHA1 and HMAC

computation concurrently to each other, using a total of 5
processors including the master. The first instance is started
on an idle system, exploiting all 5 processors as discussed
above. The second instance is started at a later point, when
the pipeline of the first instance is already running. As a
result of dynamic balancing, each computation is assigned 2
processors in addition to the master, and the two pipelines
are configured appropriately, having just the root and sink
on the master and 40 components on each other processor.
The throughput achieved by each computation is76Kb/s,
giving a total of152Kb/s. For comparison, the performance
achieved for a single computation with the same pipeline/-
component configuration on an idle system is78Kb/s. This
overhead is due to the fact that the master processor is shared
between the (root and sink of) the two computations, and this
contention leads to occasional pipeline stalls.

Having the pipelined version of HMAC (and SHA1)
integrated in theCrypto library, makes it trivial to exploit
it from within existing and conventionalapplications in a
transparent fashion. As a proof of concept, we usedscp
(version 2 of the SCP protocol) to copy a10MByte file
over Ethernet from a PC connected on the same switch
as the Suzaku board. Using the original HMAC/SHA1, the
transfer was performed at18.1Kb/s vs22.4kb/s when using
the PipeIt versions, giving an improvement of1.23x. The
speedup is relatively small because HMAC accounts for a
rather small part of the processing done byscp (which was
left untouched). It is also important to note that since the
conventional part ofscp runs on the master processor, the
PipeIt runtime deploys the HMAC/SHA1 pipeline on just 4
processors, using the master only for the root and sink.

To confirm that load balancing works better when the
pipeline has a finer granularity, we repeated the same file
transfer experiment using the 5-component pipeline version
of HMAC/SHA1 discussed previously. In this case, the
throughput was only20.4kb/s. Given that thePipeIt runtime
decides avoid using the master (except for the root and sink),
2 out of the 5 (coarse-grained) components end up being
executed on the same processor, resulting in an unbalanced
distribution of the pipelined computation which in turn leads
to a deteriorated performance.

5. Related Work
The Ambric PPA architecture [1] integrated with a master

CPU that can run a full-fledged OS would be an ideal high-
performance target for our framework. Currently Ambric
uses a structured object programming model. The program-
mer separates the application into high-level processing
objects which can be developed independently and can
execute asynchronously with each other, at their own clock

speed, on their own dedicated processor core. We believe
that the integration of PPA functionality in an OS context
with dynamic load balancing is also important. To that
end, our approach could be used to efficiently accommodate
concurrently running applications on such platforms.

The component-based design ofPipeIt has been heavily
influenced by the Click framework [5], although this targetsa
different application domain, namely the modular implemen-
tation of router functionality. Click featuresC++ objects and
employs a configuration language for specifying a network
of objects. ThenesC language [6], introduced to support
application development for resource constrained wireless
nodes (motes), also relies on the notion of components and
wiring configurations.

StreamIt [7] also introduces a high-level programming
model, but for a broader application domain thanPipeIt,
including all types of applications that use a stream as an
abstraction. In this case, there is no notion of a component
configuration, instead components are explicitly interfaced to
each other as a part of their implementation. The StreamIt
compiler can automate tasks such as partitioning, static
load balancing, layout, and memory management. However,
to our knowledge, there is no support for balancing a
computation at runtime.

Coarse-grained pipelining is addressed in [8], where an-
notations are proposed in order to perform the required code
restructuring at the source level. Pipeline parallelism isalso
exploited in [9] using the techniques of Decoupled Software
Pipelining [10], also employing thread-level speculationto
opportunistically execute multiple loop iterations in parallel.
While these approaches could be used for a PPA target, they
both assume a homogeneous shared memory system where
processors are a priori assigned to applications.

In the spirit ofPipeIt, work in [11] also targets a dynamic
computing environment where platform resources are not
statically dedicated to computations. To achieve balanced
execution of parallel applications, a user-level scheduler is
proposed, which dynamically distributes tasks over a fixed
collection of processes, which in turn are scheduled on a
fixed collection of processors by the operating system kernel.
Contrary toPipeIt, this approach requires a full-fledged OS
on each processor in order to run OS-level processes and
IPC mechanisms.

Finally, dynamic task partitioning methods have been
proposed to deal with unstructured mesh problems [12],
[13]. In [12] the tasks of a computation are developed using
an appropriate programming model and a software frame-
work, which features an extension called Mobile Object
Layer(MOL) [14] that enables transparent task migration
between processors at runtime. The authors have extended
the MOL concept by adding load balancing routines that
communicate with respective runtime support. In this case,
the target platform is not a tightly coupled SoC and load
balancing remains an application-level task, i.e., the pro-

grammer has to write code explicitly for this purpose.

6. Conclusion
We have presentedPipeIt, a framework that supports the

development of pipelined applications for embedded PPA
targets in the context of an open, general-purpose runtime
environment. Our vision is to have a system where cpu-
intensive tasks of various applications are implemented as
fine-grained pipelines (if appropriate) which are deployedon
the available PPA processors in a flexible way, as a function
of the current system workload. To that end, providing
support for dynamic load balancing, without forcing the
programmer to think about the platform constraints and
without requiring full-fledged OS support on each PPA
processor, is of major importance.

7. Acknowledgments
This paper is part of the 03ED918 research project,

implemented within the framework of the “Reinforcement
Programme of Human Research Manpower” (PENED) and
co-financed by National and Community Funds (75% from
E.U.-European Social Fund and 25% from the Greek Min-
istry of Development-General Secretariat of Research and
Technology).

References
[1] M. B. et al., “A structural object programming model, architecture,

chip and tools for reconfigurable computing,” inFCCM, 2007.
[2] Suzaku Series, Atmark Techno Inc, http://www.atmark-

techno.com/en/products/suzaku.
[3] J. Williams, The Microblaze-uClinux kernel port Project,

http://www.itee.uq.edu.au/ jwilliams/mblaze-uclinux/.
[4] D. Syrivelis and S. Lalis, “System- and application-level support for

runtime hardware reconfiguration on soc platforms.” inUSENIX ATC,
2006.

[5] E. K. et al., “The click modular router,”ACM Trans. Comput. Syst.,
vol. 18, no. 3, 2000.

[6] D. G. et al., “The nesc language: A holistic approach to networked
embedded systems,” inPLDI, 2003.

[7] W. T. et al., “Streamit: A language for streaming applications,” in
Computational Complexity, 2002.

[8] W. Thies, “A practical approach to exploiting coarse-grained pipeline
parallelism in c programs,”MICRO, 2007.

[9] M. J. B. et al., “Revisiting the sequential programming model for
multi-core,” in MICRO, 2007.

[10] N. V. et al., “Speculative decoupled software pipelining,” in PACT,
2007.

[11] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” inSPAA ’98. ACM, 1998,
pp. 119–129.

[12] K. B. et al., “A load balancing framework for adaptive and asyn-
chronous applications,”IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 2, 2004.

[13] C. W. et al., “Parallel dynamic graph partitioning for adaptive un-
structured meshes,”Journal of Parallel and Distributed Computing,
vol. 47, no. 2, 1997.

[14] N. C. et al., “Mobile object layer: a runtime substrate for parallel
adaptive and irregular computations,”Adv. Eng. Softw., vol. 31, no.
8-9, 2000.

